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TNTRODUCTION.  In its application to the solutions of engineering 
problems, the finite element discretization has been implemented almost. 
exclusively to the spatial dimensions.  For dynamic or time-dependent 
problems whose solutions as functions of time are of interest, a step- 
by-step procedure of finite difference, i.e., the quasi-static approach 
is usually employed.  The answer to the question why the time dimension 
has not been treated equally with the spatial variables in the finite 
element discretization must be related, in part at least, to the 
development of variational methods, since the finite element procedure 
can be viewed most readily as an extremizing sequence associated with a 
variational statement.  UTiile there are numerous variational principles 
for boundary value problems, few exist for initial value problems.  Like 
many problems involving nonconservative forces, the difficulty appears to 
be that initial value problems are nonself-adjoint and thus they do not 
possess variational principles in the classical sense.  In conjunction 
with problems involving nonconservative forces, certain constrained 
variational principles [sometimes called extended Hamilton's principles 
—See, for example, ref. [1]) were used for finite element solution 
fonnulations [2, 3].  Shortly afterwards, using the combined notion of 
the Lagrange multipliers and the adjoint variable, some unconstrained 
variational statements were established and used as bases for finite 
element solutions [4, 5].  This approach has been shown to be more 
advanta^^eous in terms of simplicity, versatility and the rate of conver- 
gence compared with the constrained variational approach [5, 6], 
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Fried was first to treat the time-dimension identically with the 
space dimensions in using the finite elements [7].  His solution 
formulations, however, emanate from constrained variational principles. 
In contrast, this paper presents a generalization of the unconstrained 
variational approach to time-dependent problems. 

At this point, the variational principles of integrals of convo- 
lution developed by Gurtin [8, 9] should be mentioned.  The applications 
of these principles in conjunction with finite elements in the time- 
dimension [10, 11, 12, 13] have so far failed to show any advantage over 
the procedure described by Fried.  In fact, all these analyses had to 
resort to either the Fried's or some other similar step-by-step procedure 
to complete the solutions in the time-dimension. 
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In this paper, the use of unconstrained variational principles - 
finite elements for usual boundary value problems is first illustrated 
and the advantages over the constrained formulations are pointed out. 
The unconstrained variational principles can always be constructed 
through the use of the Lagrange multipliers.  The unconstrained vari- 
ations are then shovm to lead naturally to (nonself-) adjoint variational 
statements.  Thus, nonconservative problems can be formulated easily 
using finite elements.  The application to a control problem is given 
[14].  With the introduction of a cross-product term involving two-point 
boundary (initial) values, the unconstrained variational - finite element 
fomiulation is again easily extended to include time-dependent problems. 
This formulation is obviously simpler compared with those derived from 
Gurtin's variational principles because no convolutional integrals are 
needed.  It is also easier to use and more versatile than the Fried's 
procedure due to the fact that no boundary or initial conditions are 
involved in the solution formulation and because of the nature of the 
Lagrange multipliers.  As further examples of application, finite 
element matrix equations are derived for several transient problems 
including a force vibration, a heat transfer and a wave propagation 
problem.  Detailed formulations and numerical results of two examples 
are given and comparisons with some known exact solutions are ;nade. 

2.  LAGRAiNGE MULTIPLIERS AND FINITE ELEMENT FORMULATIONS.  One of 
the ad\'antages of the finite element method is its capability of solving 
large complicated problems in a routine manner.  However, the same con- 
cepts used in a program for large systems may be understood using 
relatively simple problems. 

Let us consider the stability of a Euler's column, 
equations are as follows: 

The governing 

14.  Wu, J. J., "On the Stability of a Free-Free Beam under Axial Tlirust 
Subjected to Directional Control," Journal of Sound and Vibration, 
Vol. 43, pp. 45-52 (1975).  Also see a correction note on this paper, 
ibid. Vol. 44, p. 309 (1976). 



D.E.       E I u"" + P u" + 0)2 pAu = 0 (la) 

B.C.           u(0) = u'(0) = 0 (lb),Clc) 

u"(Jl) = 0 • (Id) 

E I u"'(Jl) + P u'(il) =0 (le) 

A usual variational principle can be written 

<5Jl (u) = 0 (2a) 
where - 

JlCu) =  j J^ [E I (u")2 - P(u')2 + co^pAu^] dx      (2b) 

To establish the equivalence between eqs. (1) and (2), one simply 
carries out the variation of J^ in eq. (2a): 

6Jl = j^   [E I u"6u" - P u'6u' + aj2 pA u 6u] dx      (3a) 

= j^   [E I u"" + P u" + 03^ pAu] 6u dx 

+ [E I u" 6u' -(El u'" + P u") 6u]^ ^ ^ 

-   [E I u" 6u' - (E I u'" + P u') 5u]^ ^ Q       (3b) 

From eq. (3b) one observes that for the coordinate functions and their 
variations satisfying the boundary conditions in eqs. (lb - le), eq. 
(la) implies eq. (2a) and vice versa. The finite element formulation 
for this problem begins with eq. (3a). 

Let 
u(x) = a (x) y (4) 

where a(x) is the displacement-function vector and U , the generalized 
displacement vector. Upon the substitution of eq. (4) into eq. (3a), 
one immediately obtains 

6U^ I K^ + tjj^M I U = 0 (5) 

where 

K-,   = /^ [E I a" a"'^ - Pa' a'"^] dx (6a) 

M = /^ pA a a"^ dx (6b) 



«r'V£.. 

Eq. (5) is not yet ready to be solved since neither U nor 6U 
consists of independent elements due to the boundary conditions re- 
quirements placed on u(x). 

Let us now consider a slightly different variational principle: 

with 
6J2 = 0 

1 (^ J2 =  - /  [El Cu")^ - P (u')2 + 0)2 pAu^] dx 

+  1. a^   [u(0)]2 + 1 a2 [u'CO)]^ 

where     a, and a2 are the Lagrange multipliers. 

Carrying out the variation of eqs. (7), we have 

6J- = f  [El u" 6u" - Pu' 5u + w^pAu^] dx 
^   0 

+ a^ u(0) 6u(0) + 02 u'(0) 6u'(0) 

= /^ [E I u"" + Pu" + 03^ pAu] 6u dx 
0 

+ [E I u" 5u' - (E I u'" + Pu') 6u] _o 

- [(E I u" - aju' - (E I u'" + Pu' + aju) 6u] 

(7a) 

(7b) 

(8a) 

(8b) 

Eq. (8b) states that a necessary and sufficient condition for 
6J2 = 0 is the problem defined by the following set of equations: 

E I «!i'-' + Pu" + oo^pAu = 0 

E I u"(0) - a2 u'(0) = 0 

E I u"' (0) + Pu'(O) + a^ u(0) = 0 

E I u"(Jl) = 0 

E I u"' (il) + Pu' (£) = 0 

(9a) 

(9b) 

(9c) 

(9d) 

(9e) 

provided   that the variation 6u is completely arbitrary, comparing 
eqs. (9) and (1), it is seen that eqs. (1) is a special case of (9) as 
a.-^  ,  (X2    approach to infinity. From eq. (8a), we can see that the finite 
element matrix equation now becomes 



where 

6U ■JK2 + a3^Mi U = 0 (10) 

K2 = Kj + a^a(0)a^(0) + a2a'(0)a''^(0) ' (11) 

The matrix JC in eq. (11) has been defined in eq. (5) and the super- 
script T denotes the transpose of a matrix (a vector).  Since 6u is 
arbitrary, 6U in eq. (10) is arbitrary, eq. (10) leads directly to the 
final matrix equation to be solved. 

{h  + '^^MJ y = 0 (12) 

It is then clear that the method of Lagrange multipliers, used in 
conjunction with the finite element method, will not only facilitate 
the solution formulations but also encompass a larger class of problems 
to be solved compared with the use of constrained variational statements. 
The applications of the same general concept can be extended further. 

3.  FROM UNCONSTRAINED VARIATIONS TO ADJOINT VARIATIONAL STATEMENTS. 
We have noted that the variation 6u in eq. (8) is quite independent 

of the function u itself and nothing will be changed if we simply 
replace 6u with 6v to emphasize this independence.  This substitution, 
however, has suggested the adjoint variational principles.  Let us 
consider 

6J3 = 0 (13a) 

J3 = / (E I u"v" - Pu'v' + co^pAuv) dx 

+ aj^u(0)v(0) + a2u'(0)v(0) + a^Pu'(,l)v(_!i) (13b) 

Carrying out the variations, we have: 

6J3 = (fiJ^)^ . (6J3)^ (14) 

where 
2^ 

(6J,)  = /  (El u"6v" - Pu'fiv' + w^pAu6v) dx 
•^ u   0 

+ a^ u(0)6v(0) + a2u'(0)6v'(0) + a^u'(,Z)   6v(,Z) (15a) 

= /  (E I u"" + Pu" + w^pAu) 6v dx 

+ [E I u"6v' -(El u'" + Pu' - a3u') 5v]  ^ 



-[(El u" - a2u') 6v' - (E I u'" + Pu' + a^u) 6v]^ ^ Q  (15b) 

and 

(.^5\  = Jo CE I V" 6u" - Pv'5u' + w^pAvfiu) dx 

+ ai v(0) 6u(0) + a2 V (0) 5u'(0) + a^  v(S,) 5u'(«-) 

= J  (El v"" + Pv" + u^pAv) 6u dx 
0 

+ [(E I v" + a3v) 6u' -(El v'" + P v') 5u] 

[(E I v" - a2 V) 6u' - (E I v'" + Pv' + a^ v) 6u] 

(16a) 

X = 0 
(16b) 

From eq. (15a), it is clear that a necessary and sufficient 
condition for (6J3)u =0 is the problem defined by the following set 
of equations: 

t).E.      E I u"" + Pu" + co^pAu = 0 (17a) 

B.C. E I u"(£,) = 0 

E I u'" (£,) +(P - 03) u'(il) = 0 

E I u"(0) - 02 u'(0) = 0 

E I u"'(0) + P u'(0) + ai u(0) = 0 

(17b) 

(17c) 

(17d) 

(17e) 

Now eqs.(9) has become a special case of eqs.(17) when 03 = 0. 
In addition, the problem defined by  (6J3)  = 0 of eqs. (16) is called 
the adjoint problem to eqs. (17).  For 03 = 0, the adjoint problem is 
identical to the problem itself — hence, the self-adjoint system.  Now, 
considering 

(18) 

in eq. (17c) , we have 

o'3^= ^  P 

E I u'" il) -K P u' (£) = 0 

K = k - 1 

(19) 

(20) 



where 

Eq. (19) defines the boundary condition of a general non-conser- 
vative load.  It is also clear from eq. (19) that K is a dimensionless 
design constant which defines the small angle between the direction of 
the applied load P and the tangent of the deflected column at the end. 
Since  (5J3)u ~ 0 alone defines the boundary value problem of eq. (17) 
and vice versa, we need not at all to be concerned with the adjoint 
problem. Now it is a simple matter to modify the finite element matrix 
equation as 

{ & + '^'M } y = 0 (22) 

h " h * «3 S'C^) S^C^) C23) 

4.  FINITE ELEMENTS FOR INITIAL AND INITIAL-BOUNDARY VALUE PROBLEMS. 

(1)  A Forced Vibration Problem.  Let us first consider a problem 
of "one" degree of freedom, i.e., a mass-spring system. The differential 
equation and initial conditions are 

m {i + k u = f(t), 0<t<T (24a) 

u(0) = UQ (24b) 

u(0) = u^ (24c) 

where    u(t) is the displacement of the mass centre from its equilib- 
rium position, m  , the amount of mass and k  , the spring constant. 
The function f(t) is given, so are the constants a and b. The constant 
T appeared in the bounds of eq. (24a) is any given positive number 
other than infinity.  In order to formulate approximate solutions for 
eqs. (24) the way we did in the previous section, let us consider a more 
general case , ; 

m {i + k u = f (t)     ^ (25a) 

u(T) - a [ u(0) - UQ ] =0 (25b) 

u(0) = Uj (25c) 

where    a is a parameter, obviously eqs. (25) reduce to (24) when 
a approaches to «> .  Now, with eqs. (25), we are able to write an 
unconstrained variational statement as follows; 

6 J4 = 0 ,   (26a) 



where 

Since 

J. = f [ - muv + kuv - £(t)v ] dt 
^   0 

+ ma [u(0) - UQ] V(T) - mu^ vCO) 

(6J4) = /  [ - mu6v + kufiv - £(t) 6v ] dt 

+ ma [ u(0) - UQ ] 6v(T) - mu^6v(0) 

I  [ mu + ku - f(t) ] (Sv dt 

(^ 
m {  u(T) - a [uCO) "ol } 6v(T) 

+ m [u(0) - ui ] 5v(0) 

. (26b) 

(27a) 

(27b) 

The already familiar form of eqs. (27) state that (a), (6J)u = 0 is a 
necessary and sufficient condition for eqs. (25),and (b),eq. (27a) 
provides us the finite element matrix equation. Thus, if we assume as 
before that 

u(t) = J(t) y 

Eq. (27a) yields 

where 

and 

V(t) = aT(t) V 

6yJ K4 y = 6v'r F 

K4 = Jj ( -m a a"^ + k a a"^) dt 

+ ma a(T) a^(0) 

1 
F = / f (t) a dt + maun a(t) + m UQ a(0) 
~   'n      ~ ~ ~ 

(28) 

(29) 

(30) 

Again, since 6V is unconstrained eq. (28) leads directly to 

K4 U = F 

which is the final equation to be solved. 

(31) 



(2) A Heat Conduction Problem. The one dimensional transient 
heat conduct problem can be described by the equation 

3   8u     du 
3^ (K 33^ )- pc 3^ - f (x,t) =0 _ (32a) 

Boundary and initial conditions are 

u(0,t)  = goCt) (32b) 

u(L,t)  = g   (t) (32c) 

u(x,0)  = h   (x) (32d) 

where K = thermal conductivity 

p = material density 

c = specific heat 

f (x,t)     = heat source function 
and 

ZQC'^) >  gl(t)  s^nd h(x)  are prescribed functions 

Let us consider 
6J5 = 0 (33a) 

+ j^   aK [u(L,t)  - gi(t)] v(L,t) dt 

- /J aK [u(0,t)   - gQ(t)] v(0,t) dt_ 

- /    pc  [u(x,0)  - h(x)] v(x,0)  dx (33b) 
0 

since 

C'SJ5)u =iy^ 1^ '5(|H.)  + PC |H. 6v + f (x,t)  6v]  dx dt 
O'O       oX dx ot 

+ /^   a K  [U(L,t)   -  gi(t)]   5v(L,t)  dt 

/o   a K  [u(0,t)   -  go(t)]   6v(0,t)  dt 

L 
/    pc   [u(x,0)   - h(x)]   6v(x,0)  dx (34a) 

10 



"*!f. ?~:;-S^^p^'V'.^"-'l"'"-^' 

= Ui: ^ (KI7 ^ - p^ IF - fc^'^^i^^ d^d^ 

Jo^ K I |H.(L'*5   - a[u(0,t)-g^(t)]  |6v(L,t) dt 

j/ K / |H.(0.t)   _ „[u(0,t)   - gpCt)]     }6v(0,t) dt 

L 
+  /     pc   [u(x,0)   - hCx)   ]   6vCx,0)  dx (34b) 

it is clear that (6J5) _ Q is a necessary and sufficient condition 
for eqs (32) as a -»- 0° and eq. (34a) provides the finite element ma- 
trix equation.  We can write from eq. (34a), 

+ j aK [u(L,t) 6v(L,t) - u(0,t) 6v(0,t)] dt 

L 
+ j^   p c  u(x,0) 6v(x,0) dt 

L T 
= /J^f(x,t) 6v dxdt 

T 
+ /^ aK [g^(t) 6v(L,t) gp(t) 6v(0,t)] dt 

Now, let 

+ f p c h(x) 6v(x,0) dx 
'0 

u(x,t) = a^(x,t) U 

T, v(x,t) = a'(x,t) V 

in the usual manner, we have 

6v'^ K U = fiv"^ F 

K = -   (K a Y a Y + P c a a *) dx dt 

T 
+ / aK [a(L,t) a(L,t) - a(0,t) a'^(0,t)] dt 

+ f p c a(x,0) a (x,0) dx 
'0 

11 

(35) 

(36a) 

(36b) 

(37) 

(38) 



and LT 
F = j[4f(x,t) a(x,t) dxdt 

+ 4 aK [gj(t) a(L,t) - g^Ct) a(0,t)] dt 

+ Jo P '^ hW a(x,0) dx (39) 

Again, since 6V in eq. (37) is completely arbitrary, we arrive at the 
final matrix equation to be solved. 

K U = F (40) 

(3) A Wave Propagation Problem. For a quite general wave propa- 
gation problem, the following system can be written. 

9^u  ^2 9^u  ^, .. ,., . ^-c ^=fCx,t) (41a) 

u(0,t) = gQ(t) (41b) 

u(L,t) = g^(t) (41c) 

u(x,0) = hQ(x) (4 Id) 

u(x,0) = h^(x) (41e) 

The extension of the previous formulation to this problem is straight 
forward.  Let us consider 

where 
(SJ^ = 0 (42a) 

T - f^f^ r  8u 9v ^ 1  8u 9v ^, ^^ i , ,^ 

T 
- a Jg [u(L,t) - g^(t)] v(L,t) dt 

+ a /^ [u(0,t) - gQ(t)] v(0,t) dt 

L 
- a J^ [u(x,0) - hQ(x)] v(x,T) dx 

L 
+ Jo [u(x,0) - h^(x)] v(x,0) dx (42b) 

12 



Again, 

(^h\  = /oY f 
cu ;u, 3v ^ ^ „2 3u X/- 9v ^ 
37^^ H-^ " ^ 3t ^^ 3t ^ f(x,t)6v] dxdt 

- a J [u(L,t) ~ g, (t)] 5v(L,t) dt 

+ a /^ [u(0,t) - gpCt)] 6v(0,t) dt 

- a / [u(x,0) - hf.(x)] 6vCx,T) dx '0 - - - '   '0 

+ / [u(x,0) - h (x)] 6v(x,0) dx 
n -l- 

(43a) 

LT 
-11 I ■'0''0 

8^u - £(x,t)] V dxdt 

-  4 { l^^"'^-" - « tu(0,t) - goCt)] J 5v(0,t) dt 

+ 4 { W^'"'^'^  ~  "^ f"^''''^^ " ^0(^)1 } 5v(x,T) dx 

- J  [ IT-C^.O) - h^(x)] 6v(x,0) dx (43b) 

From eqs. (43), it is again clear that  (6J5) =0 is a necessary and 
sufficient condition for eqs. (41) as a ->■ °° and that eq, (43a) will 
yield the finite element matrix equation.  From(43a) one has: 

L T 
f f/- 3y.6(|X.)+ c^ |H-6(|^) 1 dx dt 
^0 •'o\ 3x ^3x^     3t °^dV  J 

a / u(L,t) 6v(L,t) dt + a f  u(o,t) 5v(0,t) dt 
t t 

- a / u(x,0) 6v(x,T) dx 
V 

= // f(x,t) 5v(x,t) dx dt 

13 



a 4 ^1^^^ ^  ^^^'■^^ dt + a /^ gp(t) 6v(0,t) dt 

- a 1^   hgCx) 6v(x,T) dx + J[^ h^ (x) 5v(x,0) dx       (44) 

Again, let 

u(x,t) = a'^(x,t) U (45a) 

v(x,t) = a'^(x,t) V (45b) 

Eq. (44) becomes, in matrix form, 

6 v"^ K U = 6 V^ F (46) 

where T L 

^=   /o/o  C- S' !'^ *  C^ t  k^^   dxdt 

" " 4 a(L,t) a (L,t) dt + a J a(0,t) a^(0,t) dt 

L 
" " /o a(x,t) a (x,0) dt (47) 

T L 
F = /J^ f(x,t) a(x,t) dxdt      

T T 
" ^  /o gjCt) a(L,t) dt + a /jj gQ(t) a(0,t) dt 

,L L 
+ a J^ ^^(x) a(x,T) dt + /^ h^(x) a(x,0) dt        (48) 

Due to the arbitrariness of 6V , eq. (46) leads directly to the final 
matrix equation 

l^ = I (49) 

5. NUMERICAL DEMONSTRATIONS. Several numerical examples will be 
given in this section to demonstrate the application of the formulation 
described so far. 

(1) Forced Vibration. We shall consider a special case of the 
forced vibration problem formulated earlier.  The forcing function in 
eqs. (24) is taken to be a cosine function thus, rewrite eqs. (24), 

m u + k u = f 0 cos (j^t (50a) 
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u(0) = UQ 

u(0) = ui 

(50b) 

(50c) 

where UQ, U^, fg and cof are given constants.  In the finite element 
formulation, we shall replace eqs. (50) with the following set 

m ii + k u = fQ cos (n^t 

U(t) - a [U(0) - UQ] = 0 

u(0) - uj = 0 

(51a) 

(51b) 

thus, eqs. (50) becomes a special case of (51) as a ^ «.  It is con- 
venient  to  nondimensionalize the independent variable t and let 

T = t/T 

In terms of T, eqs. (51) become 

where 

2  9 
u + T 0)'' u = fj cos (T tof T) 

u(l) - T a [u(0) - UQ] = 0 

u(0) - T ui = 0 

f 1 = T fg/ra CO = k/m 

(52) 

(53a) 

(53b) 

(53c) 

(54) 

The exact solution for eqs. (53) can be easily written as 

U(T) = A cos (T CO • T) + B sin (T to • T) 

+ Tl cos (T (Of . T) 
with 

(55) 

m(co^-(o^^      ^ 

a uo + T uj cos   (T(o)   -  n  [a + Tcof sin   (TtOf)] 
n   — '■■■■—-  ■' " ' - -'—■     —■■' ■     ... -I 

I a + T (0 sin (T co) 
(56) 

To solve eqs. (53) using finite elements, one begins with the variational 
statement: 

6 J = 0 

J = /  [- u V + T^ (o^uv - f (T) V] dx 

(57a) 
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+ T a [uCO) - UQ] v(l) - T ui v(0) (57b) 
Now that 

(6J)u = 0 (58a) 

1 
= Jo [- li 6 V + T^ 0)2 u6v - f (T)6 V] 

+ T a [u(0) - UQ] V(1) - Tuj6v(0) (58b) 

= /o [ii + T^ 0)2 u - £(T)] 6v dt 

- {u(0) - a T[u(0) - UQ]} 6V(1) 

+ { u(0) - T uj} 6v(0) (58c) 

From eq. (58b), one has . 
1   _  , 

/j [- u 6 V + T^u^ u 6 v] dt + aT u(0) (Sv(l) 
1 

= Jj, £(T) 6V dx + a T U 6V(1) + T UJ 6V(0) (59) 
with ^ 

"^^^ == f f^^ y (60) 
v(T) = aT(T) V 

eq. (59) leads to ~    - 
6 V"^ K U = 6 v"^ F     

K U = F (61) 

K = J (- 4 a'^ + T^ 0)2 a a"^) dt 

+ a T a(l) a(0) (62) 
1 

F = / f(T) a dT + UTUQ a(l) + T u^ a(0) (63) 

The results obtained from this finite element formulation are com- 
pared with the exact solutions as shown in Tables 1-3. The values of 
the parameters chosen for these data are k = 1.0, m = 1.0, fg = 1.0, 
0)£ = 0.5, UQ = 1.0, _UQ = 1.0 the number of elements used is ten. The 
calculated u and u for T = 2.0, 10.0 and 20.0 are given in Table 1, 
2, 3 and 4 respectively. The forcing function cos o)£t and the solu- 
tion u(t) are also plotted in the range 0 < t < 20 as shown in Figure 1. 

(2) Solutions to a Transient Heat Conduction Problem. As another 
numerical example, we shall take the nondimensional heat transfer problem 
defined by the following set: 

or 

where 
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TABLE 1. Solutions to the Forced Vibration Problem Using 
FE-UVF Compared with Exact Solutions (in Parentheses} 

0 < t < 2.0 

t u(t) Exact u(t) Exact 

0 1.000 000 0  ( :i.000 000 0) 1.000 00 (1.000 00) 

0.2 1.198 652 6  ( :i.l98 652 7) 0.979 74 (0.979 73) 

0.4 1.389 153 7  ( :i.389 153 4) 0.918 43 (0.918 42) 

0.6 1.563 313 2  ( :i.563 312 6) 0.816 55 (0.816 54) 

0.8 1.713 202 9  ( :i.713 201 8) 0.676 22 (0.676 21) 

1.0 1.831 481 7 :i.831 480 3) 0.501 18 (0.501 18) 

1.2 1.911 702 4 [1.911 700 6) 0.296 62 (0.296 61) 

1.4 1.948 585 6  ( :i.948 583 6) 0.068 98 (0.068 97) 

1.6 1.938 251 2  ( :i.938 249 1) - 0.174 24 (-0.174 25) 

1.8 1.878 396 9  ( :i.878 395 0) - 0.424 82 (-0.424 80) 

2.0 1.768 416 1   ( :i.768 416 1) - 0.674 13 (-0.674 03) 
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TABLE 2. Solutions to the Forced Vibration Problem Using 
FE-UVF Compared with Exact Solutions (in Parentheses) 

0 ^ t ^ 10.0 

t u(t) u(t) 

0 1.000 (1.000) 1.004 (1.000) 

1.0 1.832 (1.831) 0.505 (0.501) 

2.0 1.770 (1.768) - 0.675 (-0.674) 

3.0 0.566 (0.565 -  1.614 (-1.608) 

4.0 -  1.094 (-1.094) -  1.518 (-1.512) 

5.0 -  2.123 (-2.122) - 0.435 (-0.435) 

6.0 -  1.920 (-1.919) 0.778 (0.773) 

7.0 -  0,843 (-0.843) 1.213 (1.207) 

8.0 0.167 (0.166) 0.690 (0.689) 

9.0 0.436 (0.435) - 0.126 (-0.122) 

10.0 0.114 (0.114) '- 0.385 (-0.381) 
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TABLE 3.  Solution to the Forced Vibration Problem Using 
FE-UVF Compared with Exact Solutions (in Parentheses) 

0 < t ^ 20,0 

t u(t) u(t) 

-    0 1.000 (1.000) 1.05 (1.00) 

2.0 1.778 (1.768) - 0.68 (-0.67) 

4J) -  1.097 (-1.094) -  1.57 (-1.51) 

6.0 -  1.928 (-1.919) 0.82 (0.77) 

8.0 0.173 (0.166) 0.71 (0.69) 

10.0 0.116 (0.114) - 0.44 (-0.38) 

12.0 0.453 (0.462) 0.88 (0.85) 

14.0 1.956 (1.950) 0.06 (0.03) 

16.0 -  0.156 (-0.162) -  1.76 (-1.71) 

18.0 -  2.199 (-2.186) 0.15 (0.14) 

20.0 -  0.348 (-0.342) 1.10 (1.08) 
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Figure ].   Forcing Function F(t) and Solution u(t) 
for the Vibration Problem 
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D.E.: 

1 
B.C.: 

I.e.: 

9^u _ 9u 

3x'- dt 
=  0 , 0<x<l ; 0<t<T 

8u u(0),t) = 1, £}L    (l,t) = 0 
3x 

u(x,0) = 0 

(64a) 

(64b,c) 

' (64d) 

where T is any given finite real positive number. To facilitate compu- 
tation, it is desirable to change the independent variable t into T 
such that 

T = t/T (65) 

thus, the system of eqs. (64) becomes 

9^u  1 3u D.E.: 

B.C.: 

I.e.: 

 =0 , 0<x<l ; 0<T<1 
dx^      T 9T 

u(0,T) = 1 ; f^ (1,T) = 0 
dX 

u(x,0) = 0 

(66a) 

(66b,c) 

(66d) 

According to our unconstrained variational formulation, this system is 
again replaced by the following: 

D.E. 

B.e. 

'^-y^=0  ,  0<x<l ; 0<x<l 
8x^  T 9x 

9u 
dx (0,T) + a [u(0,T) -1] = 0 

H (1.^) = 0 

I.e. u(x,0) = 0 

(67a) 

(67b) 

(67c) 

(67d) 

Clearly, eqs. (67) reduces to (66) as a -> °° . The variational state- 
ment can be written as 

5J = 0 (68a) 
where 1 1 

9u 3v . 1 3u T      r r  ^ dU dV   -I dU  ^ j j. J = -jj  ( + v) dxdt 
3x 3x  T 3T 

a/j ["(O.T) - 1] v(0,T) dx 

1 
+ / u(x,0) v(x,0) dx (68b) 

Due to the fact that V(X,T) is unconstrained, it is a simple matter to 
show that 

(6J)U = 0 C69) 
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is a necessary and sufficient condition of eqs. (67). Now the finite 
element matrix equations can be obtained from eq. (69). 

(5J)u= - /V [-5(-) -^^6v] dxdt 
"    0 0  8x  3x   T 3T 

1 
+ f  [U(0,T) - 1] 6v(0,T) dt 

'0 

1 
+ / u(x,0) 6v(x,0) dx = 0 (70) 

0 

or, 

- M^   [3E6(^) + i^5v] dxdt 
0 0  3x  9x     8T 

+ a f u(0,T) 5v(0,T) dt + f u(x,0)- 6v(x,0) dx 
0 0 

1 
= a / 6v(0,T) dT (71) 

Using the usual procedure of discretization and the assumption 
of displacement functions, the final finite element matrix equation 
evidently can be derived from eq. (71). We shall omit the details here. 
The computational results are presented in Tables 4 and 5. The finite 
element grid scheme used is shown in Figure 2. As clearly shown in 
those tables, excellent agreement exists between the FE-UVF approach 
and the series solution.  It is noted that the approximate solutions 
are less accurate invariably as they approach the initial time t = 0. 
This is probably due to the discontinuity of the initial boundary data 
at X = 0, t = 0. 

i 
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TABLE 4.  Transient Heat Transfer Solutions u(x,t) Using FE-UVF 
Compared with Exact Series Solutions (in Parentheses) 

0<t<T=1.00 

^"■^s,^             X 

t       ^\^ 
0 0.2 0.4 0.6 0.8 1.0 

0.2 1.000 

(1.000) 

0.754 

(0.757) 

0.583 

(0.496) 

0.370 

(0.405) 

0.264 

(0.284) 

0.228 

(0.179) 

0.4 1.000 

(1.000) 

0.855 

(0.853) 

0.713 

(0.721) 

0.622 

(0.616) 

0.552 

(0.549) 

0.516 

(0.526 

0.6 1.000 

(1.000) 

0.910 

(0.910) 

0.828 

(0.830) 

0.767 

(0.767) 

0.725 

(0.724) 

0.708 

(0.710) 

0.8 

1 

1.000 

(1.000) 

0.945 

(0.945) 

0.896 

(0.896) 

0.857 

(0.857) 

0.832 

(0.832) 

0.823 

(0.823) 

1.0 

! . 

1.000 

(1.000) 

0.967 

(0.967) 

0.937 

(0.937) 

0.913 

(0.913) 

0.897 

(0.897) 

0.892 

(0.892) 
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TABLE 5. Transient Heat Transfer Solutions u(x,t) Using FE-UVF 
Compared with Exact Series Solutions (in Parentheses) 

0 < t < T = 0.05 

^V^.^      X 
0 0.2 0.4 0.6 0.8 1.0 

0.01 1.000 

(1.000) 

0.144 

(0.157) 

0.014 

(0.005) 

0.002 

(0.000) 

0.000 

(0.000) 

0.000 

(0.000) 

0.02 1.000 

(1.000) 

0.315 

(0.317) 

0.047 

(0.046) 

(0.003) 

(0.003) 

(0.000) 

(0.000) 

(0.000 

(0.000) 

0.03 1.000 

(1.000) 

0.413 

(0.414) 

0.103 

(0.102) 

0.015 

(0.014) 

0.001 

(0.001) 

0.000 

(0.000) 

0.04 1.000 

(1.000) 

0.479 

(0.480) 

0.157 

(0.157) 

0.034 

(0.034) 

0.005 

(0.005) 

0.001 

(0.001) 

0.05 1.000 

(1.000) 

0.527 

(0.527) 

  

0.206 

(0.206) 

0.058 

(0.058) 

0.012 

(0.012) 

0.003 

(0.003) 
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Figure 2.    Finite Element Grid Scheme Used for a 
Transient Heat Conduction Problem 
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